There are 1 questions in this calculation: for each question, the 15 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 15th\ derivative\ of\ function\ \frac{2(x + 1)ln(x)}{(x - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2xln(x)}{(x - 1)} + \frac{2ln(x)}{(x - 1)}\\\\ &\color{blue}{The\ 15th\ derivative\ of\ function:} \\=&\frac{-2615348736000xln(x)}{(x - 1)^{16}} + \frac{2615348736000ln(x)}{(x - 1)^{15}} - \frac{1307674368000}{(x - 1)^{14}x} - \frac{435891456000}{(x - 1)^{13}x^{2}} - \frac{217945728000}{(x - 1)^{12}x^{3}} - \frac{130767436800}{(x - 1)^{11}x^{4}} - \frac{87178291200}{(x - 1)^{10}x^{5}} - \frac{62270208000}{(x - 1)^{9}x^{6}} - \frac{46702656000}{(x - 1)^{8}x^{7}} - \frac{36324288000}{(x - 1)^{7}x^{8}} - \frac{29059430400}{(x - 1)^{6}x^{9}} - \frac{23775897600}{(x - 1)^{5}x^{10}} + \frac{2615348736000}{(x - 1)^{15}x} + \frac{1307674368000}{(x - 1)^{14}x^{2}} + \frac{871782912000}{(x - 1)^{13}x^{3}} + \frac{653837184000}{(x - 1)^{12}x^{4}} + \frac{523069747200}{(x - 1)^{11}x^{5}} + \frac{435891456000}{(x - 1)^{10}x^{6}} + \frac{373621248000}{(x - 1)^{9}x^{7}} + \frac{326918592000}{(x - 1)^{8}x^{8}} + \frac{290594304000}{(x - 1)^{7}x^{9}} + \frac{261534873600}{(x - 1)^{6}x^{10}} + \frac{237758976000}{(x - 1)^{5}x^{11}} - \frac{19813248000}{(x - 1)^{4}x^{11}} - \frac{2615348736000ln(x)}{(x - 1)^{16}} - \frac{16765056000}{(x - 1)^{3}x^{12}} + \frac{217945728000}{(x - 1)^{4}x^{12}} - \frac{14370048000}{(x - 1)^{2}x^{13}} + \frac{201180672000}{(x - 1)^{3}x^{13}} - \frac{12454041600}{(x - 1)x^{14}} + \frac{186810624000}{(x - 1)^{2}x^{14}} + \frac{174356582400}{(x - 1)x^{15}} + \frac{2615348736000}{(x - 1)^{15}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !