There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ({x}^{2} + 2x + 2){e}^{(sin(x) - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}{e}^{(sin(x) - 1)} + 2x{e}^{(sin(x) - 1)} + 2{e}^{(sin(x) - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}{e}^{(sin(x) - 1)} + 2x{e}^{(sin(x) - 1)} + 2{e}^{(sin(x) - 1)}\right)}{dx}\\=&2x{e}^{(sin(x) - 1)} + x^{2}({e}^{(sin(x) - 1)}((cos(x) + 0)ln(e) + \frac{(sin(x) - 1)(0)}{(e)})) + 2{e}^{(sin(x) - 1)} + 2x({e}^{(sin(x) - 1)}((cos(x) + 0)ln(e) + \frac{(sin(x) - 1)(0)}{(e)})) + 2({e}^{(sin(x) - 1)}((cos(x) + 0)ln(e) + \frac{(sin(x) - 1)(0)}{(e)}))\\=&x^{2}{e}^{(sin(x) - 1)}cos(x) + 2x{e}^{(sin(x) - 1)}cos(x) + 2{e}^{(sin(x) - 1)}cos(x) + 2x{e}^{(sin(x) - 1)} + 2{e}^{(sin(x) - 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( x^{2}{e}^{(sin(x) - 1)}cos(x) + 2x{e}^{(sin(x) - 1)}cos(x) + 2{e}^{(sin(x) - 1)}cos(x) + 2x{e}^{(sin(x) - 1)} + 2{e}^{(sin(x) - 1)}\right)}{dx}\\=&2x{e}^{(sin(x) - 1)}cos(x) + x^{2}({e}^{(sin(x) - 1)}((cos(x) + 0)ln(e) + \frac{(sin(x) - 1)(0)}{(e)}))cos(x) + x^{2}{e}^{(sin(x) - 1)}*-sin(x) + 2{e}^{(sin(x) - 1)}cos(x) + 2x({e}^{(sin(x) - 1)}((cos(x) + 0)ln(e) + \frac{(sin(x) - 1)(0)}{(e)}))cos(x) + 2x{e}^{(sin(x) - 1)}*-sin(x) + 2({e}^{(sin(x) - 1)}((cos(x) + 0)ln(e) + \frac{(sin(x) - 1)(0)}{(e)}))cos(x) + 2{e}^{(sin(x) - 1)}*-sin(x) + 2{e}^{(sin(x) - 1)} + 2x({e}^{(sin(x) - 1)}((cos(x) + 0)ln(e) + \frac{(sin(x) - 1)(0)}{(e)})) + 2({e}^{(sin(x) - 1)}((cos(x) + 0)ln(e) + \frac{(sin(x) - 1)(0)}{(e)}))\\=&4x{e}^{(sin(x) - 1)}cos(x) + x^{2}{e}^{(sin(x) - 1)}cos^{2}(x) - x^{2}{e}^{(sin(x) - 1)}sin(x) + 4{e}^{(sin(x) - 1)}cos(x) + 2x{e}^{(sin(x) - 1)}cos^{2}(x) - 2x{e}^{(sin(x) - 1)}sin(x) + 2{e}^{(sin(x) - 1)}cos^{2}(x) - 2{e}^{(sin(x) - 1)}sin(x) + 2{e}^{(sin(x) - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !