There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt({x}^{2} + 16) + sqrt({x}^{2} - 8x + 12) - 2\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(x^{2} + 16) + sqrt(x^{2} - 8x + 12) - 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(x^{2} + 16) + sqrt(x^{2} - 8x + 12) - 2\right)}{dx}\\=&\frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 16)^{\frac{1}{2}}} + \frac{(2x - 8 + 0)*\frac{1}{2}}{(x^{2} - 8x + 12)^{\frac{1}{2}}} + 0\\=&\frac{x}{(x^{2} + 16)^{\frac{1}{2}}} + \frac{x}{(x^{2} - 8x + 12)^{\frac{1}{2}}} - \frac{4}{(x^{2} - 8x + 12)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !