There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -Rsin(\frac{kvt}{R}) + vt\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -Rsin(\frac{kvt}{R}) + vt\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -Rsin(\frac{kvt}{R}) + vt\right)}{dt}\\=&\frac{-Rcos(\frac{kvt}{R})kv}{R} + v\\=&-kvcos(\frac{kvt}{R}) + v\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !