There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{x(x - 4)}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} - \frac{4x}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} - \frac{4x}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)}\right)}{dx}\\=&\frac{(\frac{-(0.12 + 0)}{(0.12x + 0.35)^{2}})x^{2}}{(0.12x + 0.35)(0.12x + 0.35)} + \frac{(\frac{-(0.12 + 0)}{(0.12x + 0.35)^{2}})x^{2}}{(0.12x + 0.35)(0.12x + 0.35)} + \frac{(\frac{-(0.12 + 0)}{(0.12x + 0.35)^{2}})x^{2}}{(0.12x + 0.35)(0.12x + 0.35)} + \frac{2x}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} - \frac{4(\frac{-(0.12 + 0)}{(0.12x + 0.35)^{2}})x}{(0.12x + 0.35)(0.12x + 0.35)} - \frac{4(\frac{-(0.12 + 0)}{(0.12x + 0.35)^{2}})x}{(0.12x + 0.35)(0.12x + 0.35)} - \frac{4(\frac{-(0.12 + 0)}{(0.12x + 0.35)^{2}})x}{(0.12x + 0.35)(0.12x + 0.35)} - \frac{4}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)}\\=&\frac{-0.12x^{2}}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} - \frac{0.12x^{2}}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} - \frac{0.12x^{2}}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} + \frac{2x}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} + \frac{0.48x}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} + \frac{0.48x}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} + \frac{0.48x}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} - \frac{4}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !