There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-((\frac{1}{8})x)}{(\frac{8}{5} + \frac{4}{5}x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{-1}{8}x}{(\frac{4}{5}x + \frac{8}{5})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{-1}{8}x}{(\frac{4}{5}x + \frac{8}{5})}\right)}{dx}\\=&\frac{-1}{8}(\frac{-(\frac{4}{5} + 0)}{(\frac{4}{5}x + \frac{8}{5})^{2}})x - \frac{\frac{1}{8}}{(\frac{4}{5}x + \frac{8}{5})}\\=&\frac{x}{10(\frac{4}{5}x + \frac{8}{5})^{2}} - \frac{1}{8(\frac{4}{5}x + \frac{8}{5})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !