There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{x}{p})}^{(\frac{({p}^{2})}{({q}^{2})} - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (\frac{x}{p})^{(\frac{p^{2}}{q^{2}} - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (\frac{x}{p})^{(\frac{p^{2}}{q^{2}} - 1)}\right)}{dx}\\=&((\frac{x}{p})^{(\frac{p^{2}}{q^{2}} - 1)}((0 + 0)ln(\frac{x}{p}) + \frac{(\frac{p^{2}}{q^{2}} - 1)(\frac{1}{p})}{(\frac{x}{p})}))\\=&\frac{p^{2}(\frac{x}{p})^{(\frac{p^{2}}{q^{2}} - 1)}}{q^{2}x} - \frac{(\frac{x}{p})^{(\frac{p^{2}}{q^{2}} - 1)}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !