There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ log*3{x}^{3} + ln(ln(2))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3logx^{3} + ln(ln(2))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3logx^{3} + ln(ln(2))\right)}{dx}\\=&3log*3x^{2} + \frac{0}{(ln(2))(2)}\\=&9logx^{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 9logx^{2}\right)}{dx}\\=&9log*2x\\=&18logx\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !