There are 1 questions in this calculation: for each question, the 1 derivative of p is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{plog_{2}^{p}}{(p + 1)}\ with\ respect\ to\ p:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{plog_{2}^{p}}{(p + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{plog_{2}^{p}}{(p + 1)}\right)}{dp}\\=&(\frac{-(1 + 0)}{(p + 1)^{2}})plog_{2}^{p} + \frac{log_{2}^{p}}{(p + 1)} + \frac{p(\frac{(\frac{(1)}{(p)} - \frac{(0)log_{2}^{p}}{(2)})}{(ln(2))})}{(p + 1)}\\=&\frac{-plog_{2}^{p}}{(p + 1)^{2}} + \frac{log_{2}^{p}}{(p + 1)} + \frac{1}{(p + 1)ln(2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !