Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ M(R - \frac{C}{x} - H(1 - {(1 - P)}^{x}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = MR - \frac{MC}{x} + MH(-P + 1)^{x} - MH\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( MR - \frac{MC}{x} + MH(-P + 1)^{x} - MH\right)}{dx}\\=&0 - \frac{MC*-1}{x^{2}} + MH((-P + 1)^{x}((1)ln(-P + 1) + \frac{(x)(0 + 0)}{(-P + 1)})) + 0\\=&\frac{MC}{x^{2}} + MH(-P + 1)^{x}ln(-P + 1)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return