There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ R - \frac{C}{x} - H(1 - {(1 - P)}^{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = R - \frac{C}{x} + H(-P + 1)^{x} - H\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( R - \frac{C}{x} + H(-P + 1)^{x} - H\right)}{dx}\\=&0 - \frac{C*-1}{x^{2}} + H((-P + 1)^{x}((1)ln(-P + 1) + \frac{(x)(0 + 0)}{(-P + 1)})) + 0\\=&\frac{C}{x^{2}} + H(-P + 1)^{x}ln(-P + 1)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !