There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ e^{-x}sin(\frac{x}{y})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{-x}sin(\frac{x}{y})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{-x}sin(\frac{x}{y})\right)}{dx}\\=&e^{-x}*-sin(\frac{x}{y}) + \frac{e^{-x}cos(\frac{x}{y})}{y}\\=&-e^{-x}sin(\frac{x}{y}) + \frac{e^{-x}cos(\frac{x}{y})}{y}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !