There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{10log_{10}^{{255}^{2}}}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{10log_{10}^{65025}}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{10log_{10}^{65025}}{x}\right)}{dx}\\=&\frac{10*-log_{10}^{65025}}{x^{2}} + \frac{10(\frac{(\frac{(0)}{(65025)} - \frac{(0)log_{10}^{65025}}{(10)})}{(ln(10))})}{x}\\=&\frac{-10log_{10}^{65025}}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !