There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 10log_{10}^{\frac{({255}^{2})}{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 10log_{10}^{\frac{65025}{x}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 10log_{10}^{\frac{65025}{x}}\right)}{dx}\\=&10(\frac{(\frac{(\frac{65025*-1}{x^{2}})}{(\frac{65025}{x})} - \frac{(0)log_{10}^{\frac{65025}{x}}}{(10)})}{(ln(10))})\\=&\frac{-10}{xln(10)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !