Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(4{x}^{2} - 8x + 4)}{(10{X}^{2} - 20X + 12)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{4x^{2}}{(10X^{2} - 20X + 12)} - \frac{8x}{(10X^{2} - 20X + 12)} + \frac{4}{(10X^{2} - 20X + 12)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{4x^{2}}{(10X^{2} - 20X + 12)} - \frac{8x}{(10X^{2} - 20X + 12)} + \frac{4}{(10X^{2} - 20X + 12)}\right)}{dx}\\=&4(\frac{-(0 + 0 + 0)}{(10X^{2} - 20X + 12)^{2}})x^{2} + \frac{4*2x}{(10X^{2} - 20X + 12)} - 8(\frac{-(0 + 0 + 0)}{(10X^{2} - 20X + 12)^{2}})x - \frac{8}{(10X^{2} - 20X + 12)} + 4(\frac{-(0 + 0 + 0)}{(10X^{2} - 20X + 12)^{2}})\\=&\frac{8x}{(10X^{2} - 20X + 12)} - \frac{8}{(10X^{2} - 20X + 12)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{8x}{(10X^{2} - 20X + 12)} - \frac{8}{(10X^{2} - 20X + 12)}\right)}{dx}\\=&8(\frac{-(0 + 0 + 0)}{(10X^{2} - 20X + 12)^{2}})x + \frac{8}{(10X^{2} - 20X + 12)} - 8(\frac{-(0 + 0 + 0)}{(10X^{2} - 20X + 12)^{2}})\\=&\frac{8}{(10X^{2} - 20X + 12)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return