There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ {7}^{(x + 9)} + e^{3x} + ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {7}^{(x + 9)} + e^{3x} + ln(x)\right)}{dx}\\=&({7}^{(x + 9)}((1 + 0)ln(7) + \frac{(x + 9)(0)}{(7)})) + e^{3x}*3 + \frac{1}{(x)}\\=&{7}^{(x + 9)}ln(7) + 3e^{3x} + \frac{1}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {7}^{(x + 9)}ln(7) + 3e^{3x} + \frac{1}{x}\right)}{dx}\\=&({7}^{(x + 9)}((1 + 0)ln(7) + \frac{(x + 9)(0)}{(7)}))ln(7) + \frac{{7}^{(x + 9)}*0}{(7)} + 3e^{3x}*3 + \frac{-1}{x^{2}}\\=&{7}^{(x + 9)}ln^{2}(7) + 9e^{3x} - \frac{1}{x^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( {7}^{(x + 9)}ln^{2}(7) + 9e^{3x} - \frac{1}{x^{2}}\right)}{dx}\\=&({7}^{(x + 9)}((1 + 0)ln(7) + \frac{(x + 9)(0)}{(7)}))ln^{2}(7) + \frac{{7}^{(x + 9)}*2ln(7)*0}{(7)} + 9e^{3x}*3 - \frac{-2}{x^{3}}\\=&{7}^{(x + 9)}ln^{3}(7) + 27e^{3x} + \frac{2}{x^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !