There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 - cos(x))}{(a + bcos(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{cos(x)}{(a + bcos(x))} + \frac{1}{(a + bcos(x))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{cos(x)}{(a + bcos(x))} + \frac{1}{(a + bcos(x))}\right)}{dx}\\=& - (\frac{-(0 + b*-sin(x))}{(a + bcos(x))^{2}})cos(x) - \frac{-sin(x)}{(a + bcos(x))} + (\frac{-(0 + b*-sin(x))}{(a + bcos(x))^{2}})\\=& - \frac{bsin(x)cos(x)}{(a + bcos(x))^{2}} + \frac{sin(x)}{(a + bcos(x))} + \frac{bsin(x)}{(a + bcos(x))^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !