There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {ln(\frac{(1 - x)}{(1 + x)})}^{\frac{1}{3}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln^{\frac{1}{3}}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln^{\frac{1}{3}}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})\right)}{dx}\\=&\frac{\frac{1}{3}(-(\frac{-(1 + 0)}{(x + 1)^{2}})x - \frac{1}{(x + 1)} + (\frac{-(1 + 0)}{(x + 1)^{2}}))}{ln^{\frac{2}{3}}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})}\\=&\frac{x}{3(x + 1)^{2}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})ln^{\frac{2}{3}}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})} - \frac{1}{3(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})(x + 1)ln^{\frac{2}{3}}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})} - \frac{1}{3(x + 1)^{2}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})ln^{\frac{2}{3}}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !