There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 3{x}^{(\frac{2}{3})} - 4{x}^{\frac{1}{2}} - 2\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3{x}^{\frac{2}{3}} - 4{x}^{\frac{1}{2}} - 2\right)}{dx}\\=&3({x}^{\frac{2}{3}}((0)ln(x) + \frac{(\frac{2}{3})(1)}{(x)})) - 4({x}^{\frac{1}{2}}((0)ln(x) + \frac{(\frac{1}{2})(1)}{(x)})) + 0\\=&\frac{2}{x^{\frac{1}{3}}} - \frac{2}{x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !