There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{sin(x)}{(5 - 4cos(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sin(x)}{(-4cos(x) + 5)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sin(x)}{(-4cos(x) + 5)}\right)}{dx}\\=&(\frac{-(-4*-sin(x) + 0)}{(-4cos(x) + 5)^{2}})sin(x) + \frac{cos(x)}{(-4cos(x) + 5)}\\=&\frac{-4sin^{2}(x)}{(-4cos(x) + 5)^{2}} + \frac{cos(x)}{(-4cos(x) + 5)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !