Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arcsin(\frac{sqrt({x}^{2} - 4)}{x}) - \frac{sqrt({x}^{2} - 4)}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arcsin(\frac{sqrt(x^{2} - 4)}{x}) - \frac{1}{2}sqrt(x^{2} - 4)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin(\frac{sqrt(x^{2} - 4)}{x}) - \frac{1}{2}sqrt(x^{2} - 4)\right)}{dx}\\=&(\frac{(\frac{-sqrt(x^{2} - 4)}{x^{2}} + \frac{(2x + 0)*\frac{1}{2}}{x(x^{2} - 4)^{\frac{1}{2}}})}{((1 - (\frac{sqrt(x^{2} - 4)}{x})^{2})^{\frac{1}{2}})}) - \frac{\frac{1}{2}(2x + 0)*\frac{1}{2}}{(x^{2} - 4)^{\frac{1}{2}}}\\=&\frac{-sqrt(x^{2} - 4)}{(\frac{-sqrt(x^{2} - 4)^{2}}{x^{2}} + 1)^{\frac{1}{2}}x^{2}} + \frac{1}{(\frac{-sqrt(x^{2} - 4)^{2}}{x^{2}} + 1)^{\frac{1}{2}}(x^{2} - 4)^{\frac{1}{2}}} - \frac{x}{2(x^{2} - 4)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return