There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ sqrt(2 - cos(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(-cos(x) + 2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(-cos(x) + 2)\right)}{dx}\\=&\frac{(--sin(x) + 0)*\frac{1}{2}}{(-cos(x) + 2)^{\frac{1}{2}}}\\=&\frac{sin(x)}{2(-cos(x) + 2)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{sin(x)}{2(-cos(x) + 2)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{(\frac{\frac{-1}{2}(--sin(x) + 0)}{(-cos(x) + 2)^{\frac{3}{2}}})sin(x)}{2} + \frac{cos(x)}{2(-cos(x) + 2)^{\frac{1}{2}}}\\=&\frac{-sin^{2}(x)}{4(-cos(x) + 2)^{\frac{3}{2}}} + \frac{cos(x)}{2(-cos(x) + 2)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !