Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x + sqrt({l}^{2} - {x}^{2}) + l\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x + sqrt(l^{2} - x^{2}) + l\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x + sqrt(l^{2} - x^{2}) + l\right)}{dx}\\=&1 + \frac{(0 - 2x)*\frac{1}{2}}{(l^{2} - x^{2})^{\frac{1}{2}}} + 0\\=& - \frac{x}{(l^{2} - x^{2})^{\frac{1}{2}}} + 1\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return