There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (x - 1)e^{\frac{π}{4} + arctan(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xe^{\frac{1}{4}π + arctan(x)} - e^{\frac{1}{4}π + arctan(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xe^{\frac{1}{4}π + arctan(x)} - e^{\frac{1}{4}π + arctan(x)}\right)}{dx}\\=&e^{\frac{1}{4}π + arctan(x)} + xe^{\frac{1}{4}π + arctan(x)}(0 + (\frac{(1)}{(1 + (x)^{2})})) - e^{\frac{1}{4}π + arctan(x)}(0 + (\frac{(1)}{(1 + (x)^{2})}))\\=&e^{\frac{1}{4}π + arctan(x)} + \frac{xe^{\frac{1}{4}π + arctan(x)}}{(x^{2} + 1)} - \frac{e^{\frac{1}{4}π + arctan(x)}}{(x^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !