Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(x - 1)}^{e^{\frac{π}{4} + arctan(x)}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x - 1)^{e^{\frac{1}{4}π + arctan(x)}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x - 1)^{e^{\frac{1}{4}π + arctan(x)}}\right)}{dx}\\=&((x - 1)^{e^{\frac{1}{4}π + arctan(x)}}((e^{\frac{1}{4}π + arctan(x)}(0 + (\frac{(1)}{(1 + (x)^{2})})))ln(x - 1) + \frac{(e^{\frac{1}{4}π + arctan(x)})(1 + 0)}{(x - 1)}))\\=&\frac{(x - 1)^{e^{\frac{1}{4}π + arctan(x)}}e^{\frac{1}{4}π + arctan(x)}ln(x - 1)}{(x^{2} + 1)} + \frac{(x - 1)^{e^{\frac{1}{4}π + arctan(x)}}e^{\frac{1}{4}π + arctan(x)}}{(x - 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return