There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e}^{sin(tan({x}^{x}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{sin(tan({x}^{x}))}\right)}{dx}\\=&({e}^{sin(tan({x}^{x}))}((cos(tan({x}^{x}))sec^{2}({x}^{x})(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))))ln(e) + \frac{(sin(tan({x}^{x})))(0)}{(e)}))\\=&{x}^{x}{e}^{sin(tan({x}^{x}))}ln(x)cos(tan({x}^{x}))sec^{2}({x}^{x}) + {x}^{x}{e}^{sin(tan({x}^{x}))}cos(tan({x}^{x}))sec^{2}({x}^{x})\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {x}^{x}{e}^{sin(tan({x}^{x}))}ln(x)cos(tan({x}^{x}))sec^{2}({x}^{x}) + {x}^{x}{e}^{sin(tan({x}^{x}))}cos(tan({x}^{x}))sec^{2}({x}^{x})\right)}{dx}\\=&({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})){e}^{sin(tan({x}^{x}))}ln(x)cos(tan({x}^{x}))sec^{2}({x}^{x}) + {x}^{x}({e}^{sin(tan({x}^{x}))}((cos(tan({x}^{x}))sec^{2}({x}^{x})(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))))ln(e) + \frac{(sin(tan({x}^{x})))(0)}{(e)}))ln(x)cos(tan({x}^{x}))sec^{2}({x}^{x}) + \frac{{x}^{x}{e}^{sin(tan({x}^{x}))}cos(tan({x}^{x}))sec^{2}({x}^{x})}{(x)} + {x}^{x}{e}^{sin(tan({x}^{x}))}ln(x)*-sin(tan({x}^{x}))sec^{2}({x}^{x})(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))sec^{2}({x}^{x}) + {x}^{x}{e}^{sin(tan({x}^{x}))}ln(x)cos(tan({x}^{x}))*2sec^{2}({x}^{x})tan({x}^{x})({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})) + ({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})){e}^{sin(tan({x}^{x}))}cos(tan({x}^{x}))sec^{2}({x}^{x}) + {x}^{x}({e}^{sin(tan({x}^{x}))}((cos(tan({x}^{x}))sec^{2}({x}^{x})(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))))ln(e) + \frac{(sin(tan({x}^{x})))(0)}{(e)}))cos(tan({x}^{x}))sec^{2}({x}^{x}) + {x}^{x}{e}^{sin(tan({x}^{x}))}*-sin(tan({x}^{x}))sec^{2}({x}^{x})(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))sec^{2}({x}^{x}) + {x}^{x}{e}^{sin(tan({x}^{x}))}cos(tan({x}^{x}))*2sec^{2}({x}^{x})tan({x}^{x})({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))\\=&{x}^{x}{e}^{sin(tan({x}^{x}))}ln^{2}(x)cos(tan({x}^{x}))sec^{2}({x}^{x}) + 2{x}^{x}{e}^{sin(tan({x}^{x}))}ln(x)cos(tan({x}^{x}))sec^{2}({x}^{x}) + {x}^{(2x)}{e}^{sin(tan({x}^{x}))}ln^{2}(x)cos^{2}(tan({x}^{x}))sec^{4}({x}^{x}) + 2{x}^{(2x)}{e}^{sin(tan({x}^{x}))}ln(x)cos^{2}(tan({x}^{x}))sec^{4}({x}^{x}) + \frac{{e}^{sin(tan({x}^{x}))}{x}^{x}cos(tan({x}^{x}))sec^{2}({x}^{x})}{x} - {x}^{(2x)}{e}^{sin(tan({x}^{x}))}ln^{2}(x)sin(tan({x}^{x}))sec^{4}({x}^{x}) - 2{x}^{(2x)}{e}^{sin(tan({x}^{x}))}ln(x)sin(tan({x}^{x}))sec^{4}({x}^{x}) + 2{e}^{sin(tan({x}^{x}))}{x}^{(2x)}ln^{2}(x)cos(tan({x}^{x}))tan({x}^{x})sec^{2}({x}^{x}) + 4{e}^{sin(tan({x}^{x}))}{x}^{(2x)}ln(x)cos(tan({x}^{x}))tan({x}^{x})sec^{2}({x}^{x}) + {x}^{x}{e}^{sin(tan({x}^{x}))}cos(tan({x}^{x}))sec^{2}({x}^{x}) + {x}^{(2x)}{e}^{sin(tan({x}^{x}))}cos^{2}(tan({x}^{x}))sec^{4}({x}^{x}) - {x}^{(2x)}{e}^{sin(tan({x}^{x}))}sin(tan({x}^{x}))sec^{4}({x}^{x}) + 2{e}^{sin(tan({x}^{x}))}{x}^{(2x)}cos(tan({x}^{x}))tan({x}^{x})sec^{2}({x}^{x})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !