There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2(x - 4)}{(x - 4)} + 2x(x - 7)(x - 7)(x - 4)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2x}{(x - 4)} - \frac{8}{(x - 4)} + 2x^{4} - 36x^{3} + 210x^{2} - 392x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2x}{(x - 4)} - \frac{8}{(x - 4)} + 2x^{4} - 36x^{3} + 210x^{2} - 392x\right)}{dx}\\=&2(\frac{-(1 + 0)}{(x - 4)^{2}})x + \frac{2}{(x - 4)} - 8(\frac{-(1 + 0)}{(x - 4)^{2}}) + 2*4x^{3} - 36*3x^{2} + 210*2x - 392\\=&\frac{-2x}{(x - 4)^{2}} + \frac{8}{(x - 4)^{2}} + \frac{2}{(x - 4)} + 8x^{3} - 108x^{2} + 420x - 392\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !