There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (a{x}^{4} + b{x}^{3} + c{x}^{2} + dx + \frac{e}{(f{x}^{2} + gx + h)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ax^{4} + bx^{3} + cx^{2} + dx + \frac{e}{(fx^{2} + gx + h)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ax^{4} + bx^{3} + cx^{2} + dx + \frac{e}{(fx^{2} + gx + h)}\right)}{dx}\\=&a*4x^{3} + b*3x^{2} + c*2x + d + (\frac{-(f*2x + g + 0)}{(fx^{2} + gx + h)^{2}})e + \frac{0}{(fx^{2} + gx + h)}\\=&4ax^{3} + 3bx^{2} + 2cx + d - \frac{2fxe}{(fx^{2} + gx + h)^{2}} - \frac{ge}{(fx^{2} + gx + h)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !