There are 1 questions in this calculation: for each question, the 10 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 10th\ derivative\ of\ function\ {e}^{x}ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ \\ &\color{blue}{The\ 10th\ derivative\ of\ function:} \\=&{e}^{x}ln(x) + \frac{10{e}^{x}}{x} - \frac{45{e}^{x}}{x^{2}} + \frac{240{e}^{x}}{x^{3}} - \frac{1260{e}^{x}}{x^{4}} + \frac{6048{e}^{x}}{x^{5}} - \frac{25200{e}^{x}}{x^{6}} + \frac{86400{e}^{x}}{x^{7}} - \frac{226800{e}^{x}}{x^{8}} + \frac{403200{e}^{x}}{x^{9}} - \frac{362880{e}^{x}}{x^{10}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !