Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{x}^{y}}{({X}^{2} + {y}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{x}^{y}}{(X^{2} + y^{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{x}^{y}}{(X^{2} + y^{2})}\right)}{dx}\\=&(\frac{-(0 + 0)}{(X^{2} + y^{2})^{2}}){x}^{y} + \frac{({x}^{y}((0)ln(x) + \frac{(y)(1)}{(x)}))}{(X^{2} + y^{2})}\\=&\frac{y{x}^{y}}{(X^{2} + y^{2})x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return