Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 - {\frac{1}{4}}^{x})(2x(x + 1)(2x + 1) - 3x)}{18}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{2}{9}x^{3}{\frac{1}{4}}^{x} - \frac{1}{3}x^{2}{\frac{1}{4}}^{x} + \frac{1}{18}x{\frac{1}{4}}^{x} + \frac{1}{3}x^{2} + \frac{2}{9}x^{3} - \frac{1}{18}x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{2}{9}x^{3}{\frac{1}{4}}^{x} - \frac{1}{3}x^{2}{\frac{1}{4}}^{x} + \frac{1}{18}x{\frac{1}{4}}^{x} + \frac{1}{3}x^{2} + \frac{2}{9}x^{3} - \frac{1}{18}x\right)}{dx}\\=& - \frac{2}{9}*3x^{2}{\frac{1}{4}}^{x} - \frac{2}{9}x^{3}({\frac{1}{4}}^{x}((1)ln(\frac{1}{4}) + \frac{(x)(0)}{(\frac{1}{4})})) - \frac{1}{3}*2x{\frac{1}{4}}^{x} - \frac{1}{3}x^{2}({\frac{1}{4}}^{x}((1)ln(\frac{1}{4}) + \frac{(x)(0)}{(\frac{1}{4})})) + \frac{1}{18} * {\frac{1}{4}}^{x} + \frac{1}{18}x({\frac{1}{4}}^{x}((1)ln(\frac{1}{4}) + \frac{(x)(0)}{(\frac{1}{4})})) + \frac{1}{3}*2x + \frac{2}{9}*3x^{2} - \frac{1}{18}\\=& - \frac{2x^{3}{\frac{1}{4}}^{x}ln(\frac{1}{4})}{9} - \frac{x^{2}{\frac{1}{4}}^{x}ln(\frac{1}{4})}{3} + \frac{x{\frac{1}{4}}^{x}ln(\frac{1}{4})}{18} - \frac{2x^{2}{\frac{1}{4}}^{x}}{3} + \frac{{\frac{1}{4}}^{x}}{18} - \frac{2x{\frac{1}{4}}^{x}}{3} + \frac{2x}{3} + \frac{2x^{2}}{3} - \frac{1}{18}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return