Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 - \frac{x}{4})(2x(x + 1)(2x + 1) - 3x)}{18}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{5}{36}x^{3} + \frac{25}{72}x^{2} - \frac{1}{18}x^{4} - \frac{1}{18}x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{5}{36}x^{3} + \frac{25}{72}x^{2} - \frac{1}{18}x^{4} - \frac{1}{18}x\right)}{dx}\\=&\frac{5}{36}*3x^{2} + \frac{25}{72}*2x - \frac{1}{18}*4x^{3} - \frac{1}{18}\\=&\frac{5x^{2}}{12} + \frac{25x}{36} - \frac{2x^{3}}{9} - \frac{1}{18}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return