There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ln(2{x}^{2} - 3)x}{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{3}xln(2x^{2} - 3)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{3}xln(2x^{2} - 3)\right)}{dx}\\=&\frac{1}{3}ln(2x^{2} - 3) + \frac{\frac{1}{3}x(2*2x + 0)}{(2x^{2} - 3)}\\=&\frac{ln(2x^{2} - 3)}{3} + \frac{4x^{2}}{3(2x^{2} - 3)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !