There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({π}^{x}) + ({x}^{(e + ln(\frac{π}{2}))})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {π}^{x} + {x}^{(e + ln(\frac{1}{2}π))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {π}^{x} + {x}^{(e + ln(\frac{1}{2}π))}\right)}{dx}\\=&({π}^{x}((1)ln(π) + \frac{(x)(0)}{(π)})) + ({x}^{(e + ln(\frac{1}{2}π))}((0 + \frac{0}{(\frac{1}{2}π)})ln(x) + \frac{(e + ln(\frac{1}{2}π))(1)}{(x)}))\\=&{π}^{x}ln(π) + \frac{{x}^{(e + ln(\frac{1}{2}π))}e}{x} + \frac{{x}^{(e + ln(\frac{1}{2}π))}ln(\frac{1}{2}π)}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !