There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{sin(cos(2xln(x)))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{sin(cos(2xln(x)))}\right)}{dx}\\=&({e}^{sin(cos(2xln(x)))}((cos(cos(2xln(x)))*-sin(2xln(x))(2ln(x) + \frac{2x}{(x)}))ln(e) + \frac{(sin(cos(2xln(x))))(0)}{(e)}))\\=&-2{e}^{sin(cos(2xln(x)))}ln(x)sin(2xln(x))cos(cos(2xln(x))) - 2{e}^{sin(cos(2xln(x)))}sin(2xln(x))cos(cos(2xln(x)))\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !