There are 1 questions in this calculation: for each question, the 1 derivative of X is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (X - 4){(X + 1)}^{(\frac{2}{3})}\ with\ respect\ to\ X:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( X(X + 1)^{\frac{2}{3}} - 4(X + 1)^{\frac{2}{3}}\right)}{dX}\\=&(X + 1)^{\frac{2}{3}} + X((X + 1)^{\frac{2}{3}}((0)ln(X + 1) + \frac{(\frac{2}{3})(1 + 0)}{(X + 1)})) - 4((X + 1)^{\frac{2}{3}}((0)ln(X + 1) + \frac{(\frac{2}{3})(1 + 0)}{(X + 1)}))\\=&\frac{2(X + 1)^{\frac{2}{3}}X}{3(X + 1)} - \frac{8(X + 1)^{\frac{2}{3}}}{3(X + 1)} + (X + 1)^{\frac{2}{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !