There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 0.7088{x}^{-0.291}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{0.7088}{x^{\frac{291}{1000}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{0.7088}{x^{\frac{291}{1000}}}\right)}{dx}\\=&\frac{0.7088*-0.291}{x^{\frac{1291}{1000}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-0.2062608}{x^{\frac{1291}{1000}}}\right)}{dx}\\=&\frac{-0.2062608*-1.291}{x^{\frac{2291}{1000}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !