There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(1 - x)}^{(1 - p)} + {x}^{(1 - p)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (-x + 1)^{(-p + 1)} + {x}^{(-p + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (-x + 1)^{(-p + 1)} + {x}^{(-p + 1)}\right)}{dx}\\=&((-x + 1)^{(-p + 1)}((0 + 0)ln(-x + 1) + \frac{(-p + 1)(-1 + 0)}{(-x + 1)})) + ({x}^{(-p + 1)}((0 + 0)ln(x) + \frac{(-p + 1)(1)}{(x)}))\\=&\frac{p(-x + 1)^{(-p + 1)}}{(-x + 1)} - \frac{(-x + 1)^{(-p + 1)}}{(-x + 1)} - \frac{p{x}^{(-p + 1)}}{x} + \frac{{x}^{(-p + 1)}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !