There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e}^{({x}^{2} + 2y)}cos(t)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(x^{2} + 2y)}cos(t)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(x^{2} + 2y)}cos(t)\right)}{dx}\\=&({e}^{(x^{2} + 2y)}((2x + 0)ln(e) + \frac{(x^{2} + 2y)(0)}{(e)}))cos(t) + {e}^{(x^{2} + 2y)}*-sin(t)*0\\=&2x{e}^{(x^{2} + 2y)}cos(t)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2x{e}^{(x^{2} + 2y)}cos(t)\right)}{dx}\\=&2{e}^{(x^{2} + 2y)}cos(t) + 2x({e}^{(x^{2} + 2y)}((2x + 0)ln(e) + \frac{(x^{2} + 2y)(0)}{(e)}))cos(t) + 2x{e}^{(x^{2} + 2y)}*-sin(t)*0\\=&2{e}^{(x^{2} + 2y)}cos(t) + 4x^{2}{e}^{(x^{2} + 2y)}cos(t)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !