There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e}^{(2x + y)}sin(t)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(2x + y)}sin(t)\right)}{dx}\\=&({e}^{(2x + y)}((2 + 0)ln(e) + \frac{(2x + y)(0)}{(e)}))sin(t) + {e}^{(2x + y)}cos(t)*0\\=&2{e}^{(2x + y)}sin(t)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2{e}^{(2x + y)}sin(t)\right)}{dx}\\=&2({e}^{(2x + y)}((2 + 0)ln(e) + \frac{(2x + y)(0)}{(e)}))sin(t) + 2{e}^{(2x + y)}cos(t)*0\\=&4{e}^{(2x + y)}sin(t)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !