There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 73.26 - \frac{57.93}{({e}^{(\frac{(x - 7.52)}{1.58})} + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{57.93}{({e}^{(0.632911392405063x - 4.75949367088608)} + 1)} + 73.26\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{57.93}{({e}^{(0.632911392405063x - 4.75949367088608)} + 1)} + 73.26\right)}{dx}\\=& - 57.93(\frac{-(({e}^{(0.632911392405063x - 4.75949367088608)}((0.632911392405063 + 0)ln(e) + \frac{(0.632911392405063x - 4.75949367088608)(0)}{(e)})) + 0)}{({e}^{(0.632911392405063x - 4.75949367088608)} + 1)^{2}}) + 0\\=& - \frac{-36.664556962025{e}^{(0.632911392405063x - 4.75949367088608)}}{({e}^{(0.632911392405063x - 4.75949367088608)} + 1)({e}^{(0.632911392405063x - 4.75949367088608)} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !