There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-ln(1 - {x}^{3})}{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-1}{3}ln(-x^{3} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-1}{3}ln(-x^{3} + 1)\right)}{dx}\\=&\frac{\frac{-1}{3}(-3x^{2} + 0)}{(-x^{3} + 1)}\\=&\frac{x^{2}}{(-x^{3} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !