There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ f(y{e}^{(xy)}*3x - y + 1)dx\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3fydx^{2}{e}^{(yx)} - fydx + fdx\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3fydx^{2}{e}^{(yx)} - fydx + fdx\right)}{dx}\\=&3fyd*2x{e}^{(yx)} + 3fydx^{2}({e}^{(yx)}((y)ln(e) + \frac{(yx)(0)}{(e)})) - fyd + fd\\=&6fydx{e}^{(yx)} + 3fy^{2}dx^{2}{e}^{(yx)} - fyd + fd\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !