There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ xsin(x) + 2cos(x) + πx\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xsin(x) + 2cos(x) + πx\right)}{dx}\\=&sin(x) + xcos(x) + 2*-sin(x) + π\\=&-sin(x) + xcos(x) + π\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -sin(x) + xcos(x) + π\right)}{dx}\\=&-cos(x) + cos(x) + x*-sin(x) + 0\\=&-xsin(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -xsin(x)\right)}{dx}\\=&-sin(x) - xcos(x)\\=&-sin(x) - xcos(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -sin(x) - xcos(x)\right)}{dx}\\=&-cos(x) - cos(x) - x*-sin(x)\\=&-2cos(x) + xsin(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !