Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{x}^{x}}{(2x + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{x}^{x}}{(2x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{x}^{x}}{(2x + 1)}\right)}{dx}\\=&(\frac{-(2 + 0)}{(2x + 1)^{2}}){x}^{x} + \frac{({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{(2x + 1)}\\=&\frac{{x}^{x}ln(x)}{(2x + 1)} - \frac{2{x}^{x}}{(2x + 1)^{2}} + \frac{{x}^{x}}{(2x + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return