There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 2({x}^{2}) - \frac{1}{({e}^{x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{2} - {e}^{(-x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x^{2} - {e}^{(-x)}\right)}{dx}\\=&2*2x - ({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))\\=&4x + {e}^{(-x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4x + {e}^{(-x)}\right)}{dx}\\=&4 + ({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))\\=&-{e}^{(-x)} + 4\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !