There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (2 + 6x){e}^{(5x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2{e}^{(5x)} + 6x{e}^{(5x)}\right)}{dx}\\=&2({e}^{(5x)}((5)ln(e) + \frac{(5x)(0)}{(e)})) + 6{e}^{(5x)} + 6x({e}^{(5x)}((5)ln(e) + \frac{(5x)(0)}{(e)}))\\=&16{e}^{(5x)} + 30x{e}^{(5x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 16{e}^{(5x)} + 30x{e}^{(5x)}\right)}{dx}\\=&16({e}^{(5x)}((5)ln(e) + \frac{(5x)(0)}{(e)})) + 30{e}^{(5x)} + 30x({e}^{(5x)}((5)ln(e) + \frac{(5x)(0)}{(e)}))\\=&110{e}^{(5x)} + 150x{e}^{(5x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !