There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{5} + 4){e}^{(7x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{5}{e}^{(7x)} + 4{e}^{(7x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{5}{e}^{(7x)} + 4{e}^{(7x)}\right)}{dx}\\=&5x^{4}{e}^{(7x)} + x^{5}({e}^{(7x)}((7)ln(e) + \frac{(7x)(0)}{(e)})) + 4({e}^{(7x)}((7)ln(e) + \frac{(7x)(0)}{(e)}))\\=&5x^{4}{e}^{(7x)} + 7x^{5}{e}^{(7x)} + 28{e}^{(7x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !