There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {x}^{2}{(1 - 4x)}^{(\frac{-1}{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(-4x + 1)^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(-4x + 1)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(-4 + 0)}{(-4x + 1)^{\frac{3}{2}}})x^{2} + \frac{2x}{(-4x + 1)^{\frac{1}{2}}}\\=&\frac{2x^{2}}{(-4x + 1)^{\frac{3}{2}}} + \frac{2x}{(-4x + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2x^{2}}{(-4x + 1)^{\frac{3}{2}}} + \frac{2x}{(-4x + 1)^{\frac{1}{2}}}\right)}{dx}\\=&2(\frac{\frac{-3}{2}(-4 + 0)}{(-4x + 1)^{\frac{5}{2}}})x^{2} + \frac{2*2x}{(-4x + 1)^{\frac{3}{2}}} + 2(\frac{\frac{-1}{2}(-4 + 0)}{(-4x + 1)^{\frac{3}{2}}})x + \frac{2}{(-4x + 1)^{\frac{1}{2}}}\\=&\frac{12x^{2}}{(-4x + 1)^{\frac{5}{2}}} + \frac{8x}{(-4x + 1)^{\frac{3}{2}}} + \frac{2}{(-4x + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !