Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt({x}^{2} - log_{x}^{432x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(x^{2} - log_{x}^{432x})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(x^{2} - log_{x}^{432x})\right)}{dx}\\=&\frac{(2x - (\frac{(\frac{(432)}{(432x)} - \frac{(1)log_{x}^{432x}}{(x)})}{(ln(x))}))*\frac{1}{2}}{(x^{2} - log_{x}^{432x})^{\frac{1}{2}}}\\=&\frac{log_{x}^{432x}}{2(x^{2} - log_{x}^{432x})^{\frac{1}{2}}xln(x)} - \frac{1}{2(x^{2} - log_{x}^{432x})^{\frac{1}{2}}xln(x)} + \frac{x}{(x^{2} - log_{x}^{432x})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return